Site-directed mutagenesis experiments on the putative deprotonation site of squalene-hopene cyclase from Alicyclobacillus acidocaldarius.
نویسندگان
چکیده
To provide insight into the catalytic mechanism for the final deprotonation reaction of squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius, mutagenesis experiments were conducted for the following ten residues: Thr41, Glu45, Glu93, Arg127, Trp133, Gln262, Pro263, Tyr267, Phe434 and Phe437. An X-ray analysis of SHC has revealed that two types of water molecules ("front water" and "back waters") were involved around the deprotonation site. The results of these mutagenesis experiments allow us to propose the functions of these residues. The two residues of Gln262 and Pro263 probably work to keep away the isopropyl group of the hopanyl cation intermediate from the "front water molecule," that is, to place the "front water" in a favorable position, leading to the minimal production of by-products, i.e., hopanol and hop-21(22)-ene. The five residues of Thr41, Glu45, Glu93, Arg127 and Trp133, by which the hydrogen-bonded network incorporating the "back waters" is constructed, increase the polarization of the "front water" to facilitate proton elimination from the isopropyl moiety of the hopanyl cation, leading to the normal product, hop-22(29)-ene. The three aromatic residues of Tyr267, Phe434 and Phe437 are likely to play an important role in guiding squalene from the enzyme surface to the reaction cavity (substrate channeling) by the strong affinity of their aromatic residues to the squalene substrate.
منابع مشابه
Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
Substrate access to the active-site cavity of squalene-hopene cyclase from Alicyclobacillus acidocaldarious and lanosterol synthase [OSC (oxidosqualene cyclase)] from Saccharomyces cerevisiae was studied by an inhibition, mutagenesis and homology-modelling approach. Crystal structure and homology modelling indicate that both enzymes possess a narrow constriction that separates an entrance lipop...
متن کاملCatalytic function of the residues of phenylalanine and tyrosine conserved in squalene-hopene cyclases.
Site-directed mutagenesis experiments on all the conserved residues of Phe and Tyr in all the known squalene-hopene cyclases (SHCs) were carried out to identify the active site residues of thermophilic Alicyclobacillus acidocaldarius SHC. The following functions are proposed on the basis of kinetic data and trapping of the prematurely cyclized products: (1) The Y495 residue probably amplifies t...
متن کاملOverexpression of squalene-hopene cyclase by the pET vector in Escherichia coli and first identification of tryptophan and aspartic acid residues inside the QW motif as active sites.
An overexpression system for squalene-hopene cyclase (SHC) was constructed by using the pET3a vector, which is responsible for high expression with help from the strong T7 promoter when incorporated into E. coli BL21(DE3). Site-directed mutagenesis experiments prove that two amino acid residues of tryptophan and aspartic acid inside the QW-motif 5 resided as active sites.
متن کاملStructure and function of a squalene cyclase.
The crystal structure of squalene-hopene cyclase from Alicyclobacillus acidocaldarius was determined at 2.9 angstrom resolution. The mechanism and sequence of this cyclase are closely related to those of 2,3-oxidosqualene cyclases that catalyze the cyclization step in cholesterol biosynthesis. The structure reveals a membrane protein with membrane-binding characteristics similar to those of pro...
متن کاملActivation-independent cyclization of monoterpenoids.
The biosynthesis of cyclic monoterpenes (C(10)) generally requires the cyclization of an activated linear precursor (geranyldiphosphate) by specific terpene cyclases. Cyclic triterpenes (C(30)), on the other hand, originate from the linear precursor squalene by the action of squalene-hopene cyclases (SHCs) or oxidosqualene cyclases (OSCs). Here, we report a novel terpene cyclase from Zymomonas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioscience, biotechnology, and biochemistry
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2004